Example: A Junction Diode Circuit

Consider the following circuit with two junction diodes:

The diodes are identical, with n = 1 and $I_s = 10^{-14}$ A.

Q: If the current through the resistor is 6.5 mA, what is the voltage of source V_S ??

A: This is a difficult problem to solve! Certainly, we cannot just write:

and then the answer. Instead, let's just determine what we can, and see what happens!

1) If 6.5 mA flows through a 0.1 K resistor, the voltage across that resistor is:

$$V_R =$$

2) If the voltage across the resistor is $0.65\ V$, then the voltage across the diode D_2 , which is **parallel** to the resistor, is the **same** value:

$$V_{D2} =$$

3) If we know the **voltage** across a p-n junction diode, then we also know its **current**!

$$i_{D2} = I_S exp \left[\frac{v_{D2}}{n V_T} \right] = 10^{-14} exp \left[\frac{0.650}{0.025} \right] = 1.96 mA$$

4) If we know i_{D2} and the current through the resistor, we know (using KCL) the current through D_1 :

$$i_{D1} =$$

5) If we know the current through a junction diode, then we can find the voltage across it:

$$v_{D1} = nV_T \ln \left(\frac{i_{D1}}{I_S} \right) = 0.025 \ln \left(\frac{0.00846}{10^{-14}} \right) = 0.69 V$$

6) Finally, if we know v_{D1} and v_{D2} , we can find V_{5} using KVL:

V₅ =

$$+ v_{D1} = 0.69V - V_{D1} = 8.46 \text{ mA}$$

$$i_{D1} = 8.46 \text{ mA}$$

$$+ v_{D2} = 1.96 \text{ mA}$$

$$+ v_{D2} = 0.65V - V_{D2} = 0.65V - 0.65V$$

Jim Stiles The Univ. of Kansas Dept. of EECS