Example: A Junction Diode Circuit

Consider the following circuit with two junction diodes:

The diodes are identical, with $n=1$ and $I_{S}=10^{-14} \mathrm{~A}$.

Q: If the current through the resistor is 6.5 mA , what is the voltage of source V_{s} ??

A: This is a difficult problem to solve! Certainly, we cannot just write:

$$
V_{s}=
$$

and then the answer. Instead, let's just determine what we can, and see what happens!

1) If 6.5 mA flows through a 0.1 K resistor, the voltage across that resistor is:

$$
v_{R}=
$$

2) If the voltage across the resistor is 0.65 V , then the voltage across the diode D_{2}, which is parallel to the resistor, is the same value:

$$
v_{D 2}=
$$

3) If we know the voltage across a p-n junction diode, then we also know its current!

$$
i_{O 2}=I_{S} \exp \left[\frac{V_{D 2}}{n V_{T}}\right]=10^{-14} \exp \left[\frac{0.650}{0.025}\right]=1.96 \mathrm{~mA}
$$

4) If we know $i_{D 2}$ and the current through the resistor, we know (using KCL) the current through D_{1} :

$$
i_{01}=
$$

$$
+v_{D 1}-
$$

$$
i_{01}=3.46 \mathrm{~mA}
$$

5) If we know the current through a junction diode, then we can find the voltage across it:

$$
v_{D 1}=n V_{T} \ln \left(\frac{i_{D 1}}{I_{S}}\right)=0.025 \ln \left(\frac{0.00846}{10^{-14}}\right)=0.69 \mathrm{~V}
$$

6) Finally, if we know $v_{D 1}$ and $v_{D 2}$, we can find v_{s} using KVL:

$$
V_{s}=
$$

$$
+v_{o 1}=0.69 \mathrm{~V}-
$$

